

2023 COASTAL MASTER PLAN COMMITTED TO OUR COAST

THE PLANNING TOOL: 2023 COASTAL MASTER PLAN

DAVID GROVES

DECEMBER 21, 2020

AN OBJECTIVE AND TRANSPARENT APPROACH TO PROJECT SELECTION

- 1. Compares projects
 based on common
 performance metrics
 and costing approach
- 2. Identifies alternatives (groups of projects) for consideration
- 3. Interactive visualization supports stakeholder discussions over alternatives

COMPARISON OF MODELED EFFECTS OF PROJECTS - RISK REDUCTION

Most cost-effective risk reduction projects from 2017

COMPARISON OF MODELED EFFECTS OF PROJECTS - LAND BUILDING

Most effective restoration projects in building land from 2017

DEVELOPING ALTERNATIVES TO ANSWER PLANNING QUESTIONS - RISK REDUCTION

Which projects would reduce the most risk for \$25 billion?

DEVELOPING ALTERNATIVES TO ANSWER PLANNING QUESTIONS - LAND BUILDING

Which projects would build the most land for \$25 billion?

INTERACTIVE VISUALIZATION

SUPPORTING PLANNING AND ENGAGEMENT

GROUPS OF PROJECTS TO ACHIEVE MASTER PLAN OBJECTIVES

- Maximizes key decision drivers:
 - Land area
 - Expected Annual Damage Reduction
- Evaluated over time for both restoration and risk reduction

Land trajectory with and without restoration project

GROUPS OF PROJECTS TO ACHIEVE MASTER PLAN OBJECTIVES

- Consistent with key constraints:
 - Funding availability
 - Available sediment
 - Project compatibilities
 - Outcomes with respect to other criteria
- For a specified scenario

GROUPS OF PROJECTS TO ACHIEVE MASTER PLAN OBJECTIVES

- Consistent with key constraints:
 - Funding availability
 - Available sediment
 - Project compatibilities
 - Outcomes with respect to other criteria
- For a specified scenario

SEDIMENT BORROW REQUIREMENTS

CAN BE MET BY DIFFERENT SOURCES--PROJECT COSTS ADJUST ACCORDINGLY

- Planning Tool tracks available borrow from non-renewable and renewable sources
- Marsh creation and land bridge projects can acquire borrow from different sources
- Cost of borrow depends on sources used
 - Example: Borrow cost for Project
 2 is a function of "a" and "b" and
 unit costs for each borrow source
- Planning Tool maximizes land subject to available sediment and funding

GROUPS OF PROJECTS TO ACHIEVE MASTER PLAN OBJECTIVES

- Consistent with key constraints:
 - Funding availability
 - Available sediment
 - Project compatibilities
 - Outcomes with respect to other criteria
- For a specified scenario

PROJECT EFFECTS

REFLECT ENGINEERING, DESIGN, AND CONSTRUCTION TIME

- Predictive models delay effects until ED & Construction ends
- For some projects, interim benefits accrue during construction
- This matters, since PT considers benefits every year

GROUPS OF PROJECTS TO ACHIEVE MASTER PLAN OBJECTIVES

- Consistent with key constraints:
 - Funding availability
 - Available sediment
 - Project compatibilities
 - Outcomes with respect to other criteria
- For a specified scenario

SCENARIO ANALYSIS

IMPLICATIONS OF FUTURE UNCERTAINTY

- Develop alternatives under different assumptions about the future
- Compare project selections and outcomes
- Develop robust alternatives

Environmental Scenarios (2)

Cost Uncertainty (2 levels)

Landscape model uncertainty

Levee performance (fragility)

Benefits from projects (2 levels)

ROBUST ALTERNATIVES

AN APPROACH TO MANAGING UNCERTAINTY

- Select first set of projects (next 20 years) that performs well across each scenario, within budget
- 2. Fix first set of projects
- 3. Select second set of projects (final 30 years) that performs well across each scenario

Total Land Comparison (Optimal and Robust)

